Phylogeographic Analyses of Submesophotic Snappers Etelis coruscans and Etelis “marshi” (Family Lutjanidae) Reveal Concordant Genetic Structure across the Hawaiian Archipelago
نویسندگان
چکیده
The Hawaiian Archipelago has become a natural laboratory for understanding genetic connectivity in marine organisms as a result of the large number of population genetics studies that have been conducted across this island chain for a wide taxonomic range of organisms. However, population genetic studies have been conducted for only two species occurring in the mesophotic or submesophotic zones (30+m) in this archipelago. To gain a greater understanding of genetic connectivity in these deepwater habitats, we investigated the genetic structure of two submesophotic fish species (occurring ∼200-360 m) in this archipelago. We surveyed 16 locations across the archipelago for submesophotic snappers Etelis coruscans (N = 787) and E. "marshi" (formerly E. carbunculus; N = 770) with 436-490 bp of mtDNA cytochrome b and 10-11 microsatellite loci. Phylogeographic analyses reveal no geographic structuring of mtDNA lineages and recent coalescence times that are typical of shallow reef fauna. Population genetic analyses reveal no overall structure across most of the archipelago, a pattern also typical of dispersive shallow fishes. However some sites in the mid-archipelago (Raita Bank to French Frigate Shoals) had significant population differentiation. This pattern of no structure between ends of the Hawaiian range, and significant structure in the middle, was previously observed in a submesophotic snapper (Pristipomoides filamentosus) and a submesophotic grouper (Hyporthodus quernus). Three of these four species also have elevated genetic diversity in the mid-archipelago. Biophysical larval dispersal models from previous studies indicate that this elevated diversity may result from larval supplement from Johnston Atoll, ∼800 km southwest of Hawaii. In this case the boundaries of stocks for fishery management cannot be defined simply in terms of geography, and fishery management in Hawaii may need to incorporate external larval supply into management plans.
منابع مشابه
High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago
In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100-400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehe...
متن کاملSpecies Distribution Models of Tropical Deep-Sea Snappers
Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We us...
متن کاملGenetic consequences of introducing allopatric lineages of Bluestriped Snapper (Lutjanus kasmira) to Hawaii.
A half century ago the State of Hawaii began a remarkable, if unintentional, experiment on the population genetics of introduced species, by releasing 2431 Bluestriped Snappers (Lutjanus kasmira) from the Marquesas Islands in 1958 and 728 conspecifics from the Society Islands in 1961. By 1992 L. kasmira had spread across the entire archipelago, including locations 2000 km from the release site....
متن کاملLarval ecology of a suite of snappers (family: Lutjanidae) in the Straits of Florida, western Atlantic Ocean
Despite the ecological and economic importance of western Atlantic Ocean lutjanid species, little is known about their larval stage. Pelagic larval distribution, abundance, growth, mortality, and spawning patterns of 6 western Atlantic snapper species were examined from ichthyoplankton samples collected monthly over 2 yr along a transect spanning the east–west axis of the Straits of Florida (SO...
متن کاملEscaping paradise: Larval export from Hawaii in an Indo-Pacific reef fish, the Yellow Tang (Zebrasoma flavescens).
The depauperate marine ecosystems of the Hawaiian Archipelago share a high proportion of species with the southern and western Pacific, indicating historical and/or ongoing connections across the large oceanic expanse separating Hawaii from its nearest neighbors. The rate and direction of these interactions are, however, unknown. While previous biogeographic studies have consistently described ...
متن کامل